
Introduction to

PopcornSAR Adaptive AUTOSAR

(R20-11) Tool chain
March. 2022

Index

1. Automotive Software Development Process with Adaptive AUTOSAR (R20-11)

2. Overview of PopcornSAR Adaptive AUTOSAR (R20-11) tool chain

3. Product introduction: PARA

4. Product introduction: PACON IDE

5. Product introduction: Virtual ECU

6. Example of PopcornSAR AP development environment

7. PopcornSAR AP tool roadmap(~2023)

(Appendix 1) Tool demonstrations

(Appendix 2) ISO26262 Certificate of PopcornSAR Adaptive platform Authoring tool

3

1. PopcornSAR provides automotive software development tool chain for Adaptive AUTOSAR Applications(AA).

• Supporting the whole development process of Adaptive Applications/ECUs for OEM/Tier1.

2. Able to automate the whole development process based on CI/CD after the initial manual development.

3. Yocto SDK is used for Adaptive application(AA) development after the SOP.

Initial manual development

CI/CD pipeline

E/E Architecture design SW Implementation Integration System test ECU test

Requirements AUTOSAR
modeling

C++code/Manif
est Generation

Platform-level AAs
(EM/SM/CM/S2S/
PHM/DM/UCM)

Yocto SDK Function
verification

(Virtual ECU)

Function
verification

(Physical ECU)

[Results : ARXML]

- Application Design
- Machine Manifest
- Execution Manifest
- Service Instance
Manifest etc.

[Results : Manifest(json)
/ Codes(Gen.)]

- Application Design
- Machine Manifest
- Execution Manifest
- Service Instance
Manifest etc.

POSIX OS
(Execution)

Jenkins CI/CD
- Yocto Recipe

BSP Image
(Docker Container)

Application-level
AAs

AA verification
Report

AA
verification

Report

$ Docker Run => Execute Execution Management(EM)

[Results]

[Results]

- FCs library (PARA)

- Manifest (*.json)

- ARXML (configuration

management)

PopcornSAR’s provision

Analyzation
Result

Tool : AutoSAR.io
[Results]

Executable

Tool : PACON IDE
(Including PARA)

1. Automotive Software Development Process with Adaptive AUTOSAR (R20-11)

4

• Vehicle functions and cyber security can be updated through OTA after SOP.

Requirements

ARXML
Design

C++ code/Manifest
Generation

Generated
Codes

Manifest Files

User Code

Hand-coding
C++ Codes
After Generation

Compile

FC library files

Executable Files

Virtual ECU

• After testing on virtual ECU, developers need to conduct system test on

the physical ECU.

1. Automotive Software Development Process with Adaptive AUTOSAR (R20-11)

LIB

AP version (R20-11) Upgrade AP version through OTA (R21-11)

Develop SOP Shipment Disposal

2. Overview of PopcornSAR Adaptive AUTOSAR (R20-11) tool chain

• A development platform with tools installed in PC

① SDK of Adaptive Platform(AP) Functional Cluster(FC) or Vehicle APIs (No dependency on middleware vendor).

② Providing virtual ECU (simulation & test), supporting programing languages like C＋＋.

③ Coding Rule check, API autocomplete, etc.

ARXML modeling tool
(Supports AP & CP)

Adaptive Platform Functional
Cluster(FC) & Platform Level
Adaptive Applications

Ubuntu(HOST OS)

PACON IDE (User N)

Compiler

Vehicle SDK

Virtual ECU Docker Container N

vscode-server

other tools

AutoSAR.io Vscode

Dev. server

5

System Test Docker Container N

Not provided by
PopcornSAR

PARA

3. Product Introduction : PARA - FCs list (R20-11) To-be (before 2023)

6

AUTOSAR Runtime for Adaptive Applications (ARA)

(Virtual) Machine / Container / Hardware

C++ Source Code
Generator

Specific
Generator

EXE
PopcornSAR
Specific

Available
before 2023

Platform Level
Application

Manifest
Generator

ara::com
communication

management

ara::per
persistency

ara::core
core types

ara::exec
execution

management

ara::iam
identity access
management

ara::phm
platform health

management

ara::tsync
time

synchronization

POSIX PSE51/C++ STL
operating system interface

ara::crypto
cryptography

ara::log
logging & tracing

ara::ucm
update & configuration

management

ara::sm
state management

ara::diag
diagnostics

EXE

EXE EXE

EXE

EXE

ara::nm
network

management

EXE

EXEEXE

Available
now

Libpara
Library of safety

mechanism

CAN-DO
CAN virtual ECU

Python
SOME/IP

AI Python for SOME/IP

Py

S2S
Signal-to-service

management

EXE

Py

EXE

EXE

AA for NON-AA
EM/SM for non-autosar

EXE

3. Product introduction: PARA - Features

7

1. PARA enables Adaptive Application tests without Execution Management(EM).

• According to AUTOSAR standard, EM is essential. However, PARA users can

develop/test adaptive applications without EM, increasing development efficiency.

2. If no problem is found in ARXML Validation, no more parameter is needed for

PopcornSAR’s generators, and the generation will be done automatically.

• AutoSAR.io includes generators of FC, so it automatically analyzes Adaptive

Applications and Machine, and generates related source codes and Manifest files.

3. PopcornSAR can migrate results(C++) from Matlab/Simulink 2021a(R19－11) or AP M

odel Based Design(MBD), Legacy MBD into Adaptive applications, and related

guidelines are also available.

• It’s necessary to use Matlab/Simulink to develop Adaptive Applications for control.

4. PARA supports Python’s SOME/IP for AI development.

3. Product introduction: PARA - Features

8

<Generation finishes in average of 1 minute by PARA in AutoSAR.io>

3. Product introduction: PARA – Safety Mechanism for ISO26262

9

• PopcornSAR provides special safety mechanism(libpara) which is developed by

PopcornSAR own. It can detect faults in execution level when AA is running, such as:

1) Human errors in using ARA API when implementing Adaptive Applications,

2) Human errors in using POSIX OS.

<ex1 Human error of ara API : SOME/IP Error fault detection when AA runs: someip OfferService API>

2022/02/09 03:39:18.645278 102307244 001 ECU1 CM-- DFLT log error V 1 [InitByManifest:: ManifestParser::InitByManifest::
HasParserError fail <0> (/home/popcornsar/para-r2011-main/para-api/com/internal/database/database.cpp #63)] 5terminate
called after throwing an instance of 'std::runtime_error' 6 what(): InitByManifest:: ManifestParser::InitByManifest::
HasParserError fail <0> (/home/popcornsar/para-r2011-main/para-api/com/internal/database/database.cpp #63

<ex2 Human error of POSIX OS : dummy files created when using vi editor of POSIX OS in target board>

3. Product introduction: PARA – CAN-DO(based on Docker container)

10

• CAN-DO can generate CAN virtual ECU which is based on docker container with

ARXML/DBC/EXCEL.

• Able to fast generate multiple CAN virtual ECUs for testing ECUs.

• Able to manage CAN virtual ECU’s configurations through Dockerhub, and able to

automate the virtual ECU generation process through Jenkins.

• No limitation of AUTOSAR versions.

GenerationInput

Auto-distribution and generation through Jenkins
Configuration
management

<ARXML / DBC / EXCEL> <CAN Virtual ECU based on Docker container>

Output

<.CSV or .json>

3. Product introduction: PARA – Example use case of CAN-DO

ADAS ECU for Variant 2

Adaptive
Application
Variant 2

Chassis
virtual
CAN ECU
Variant 2

Powertrain
virtual
CAN ECU
Variant 2

ECU C-II

…

AA3

AA2

…

AA1

ECU C-III

ECU C-I

ECU P-II

…

ECU P-III

ECU P-I

Adaptive
Application
Variant 1

Chassis
virtual
CAN ECU
Variant 1

Powertrain
virtual
CAN ECU
Variant 1

ECU C-2

…

AA3

AA2

…

AA1

ECU C-3

ECU C-1

ECU P-2

…

ECU P-3

ECU P-1

CAN

• Virtual CAN ECUs can be generated by CAN-DO automatically.

• Configurations can be saved & managed by Dockerhub/Docker registry.

Vehicle variant 2

ADAS ECU for Variant 1

Vehicle variant 1

3. Product introduction: PARA – AA for Non-AUTOSAR Applications execution

• EM might not recognize non-AUTOSAR Apps (docker, legacy network app, Python etc).

• PopcornSAR provides special AA as a role of EM/SM to execute Non-AUTOSAR Apps.

Host OS AA
(Adaptive AUTOSAR)

Docker Container
(Non-AUTOSAR)

Management
& Execution

EM/SM for
Non-

AUTOSAR

SM

EM

Legacy network

CAN / LIN

AA1 AA2 AA3 Container A

Non-
AUTOSAR

AA1
(Python)

Container B

Non-
AUTOSAR

AA2
(Python)

4. Product introduction: PACON IDE – Features

13

1. PACON IDE(=Docker Container) can be customized according to customer’s needs.

• Separate IDEs for different variants.

• Customer’s IDEs can be redistributed & managed through Jenkins CI/CD.

2. Has no dependency on Adaptive Platform Vendor.

3. Code developer can use Vscode to connect with PACON IDE.

• Docker Container has essential extensions for using PARA & Vscode.

• External network is not needed.

4. Wireshark is provided even if it’s not installed in developer’s PC.

5. Can be distributed through Jenkins CI/CD.

6. Provides additional features for efficient development.

• Auto complete function for ARA API & open source API.

• Real-time code rule check.

• Debug.

• Various programming languages (Python etc.,).

4. Product introduction: PACON IDE – Two variations of PACON IDE

14

① Develop within developer’s PC

Windows/Ubuntu/Mac

PACON IDE

Compiler

Vehicle SDK

Virtual ECU Docker Container

VSCode-server

other tools

Developer’s PC

System Test Docker Container

docker container：Distributed through Dockerhub

② With connection to development server

Windows/Ubuntu/Mac

Developer’s PC

VSCode VSCode

Ubuntu(HOST OS)

PACON IDE (User N)

Compiler

Vehicle SDKVSCode-server

Virtual ECU Docker Container N

other tools

Dev. Server

System Test Docker Container N

(Without external network) (Increase convenience & efficiency based on
remote co-working environment)

15

Variant CPU OS

Variant 1 NVIDIA Linux (5.0)

NVIDIA Linux (5.15)

Variant 2 Intel QNX

NXP QNX

Variant 3 R-car Android

Variant2_intel:1.0.0

Variant3:1.0.0

Variant1:1.1.0

Variant1:1.0.0

Variant2_nxp:1.0.0

• Separate IDEs for different variants.

• Customer IDE can be redistributed & managed through Jenkins CI/CD.

• IDE must be redistributed according to updates of OS.

4. Product introduction: PACON IDE – Customization according to requirements

Auto-distribution
through Jenkins

Information of
customer’s target ECU

CPU
(NXP, RENESAS,

NVIDIA etc.)

POSIX OS
(Linux, QNX etc.)

Compiler
Functional clusters

4. Product introduction: PACON IDE - IDE and Virtual ECU creation process

16

Development environment
for target ECU (=PACON IDE)

Vehicle SDKvscode-server

Virtual ECU corresponding
to physical ECU

Virtual ECU Docker Container N

Container for system test

System Test Docker Container N

Compiler other tools

Configuration
management

5. Product introduction: Virtual ECU – Features (1)

17

1. PopcornSAR’s virtual ECU can be customized according to customer’s requirements.

• Separate virtual ECUs for different variants.

• Customer’s virtual ECUs can be redistributed & managed through Jenkins CI/CD.

2. Virtual ECU has no dependency on Adaptive Platform Vendor.

3. PopcornSAR’s Virtual ECU has lighter footprint, inducing efficient development with less

compatibility issues than QEMU.

• PopcornSAR provides virtual ECU(docker container) which corresponds to customer’s physical ECU

requirements(POSIX OS etc.).

• After being tested on Docker Container, adaptive applications can be copied directly on target ECU.

5. Product introduction: Virtual ECU – Features (2)

18

4. Developers can generate virtual ECUs through PACON IDE.

5. Developers can develop multiple ECUs in docker container, manage their configurations through

Dockerhub or Docker registry, and share their results with other colleagues.

6. Multiple virtual ECUs can be generated by Jenkins CI/CD for adaptive application tests.

7. PACON IDE provides additional docker containers for virtual ECUs to carry out other system tests.

• Usually, it’s difficult to add system testing software in virtual ECU. (Ex : Installing tshark in virtual ECU ARM)

• PopcornSAR can generate additional docker containers for system testing software.

19

Variant CPU OS

Variant 1 NVIDIA Linux (5.0)

NVIDIA Linux (5.15)

Variant 2 Intel QNX

NXP QNX

Variant 3 R-car Android

• Separate virtual ECUs for different variants.

• Customer’s virtual ECU can be redistributed & managed through

Jenkins CI/CD.

• Virtual ECU is compatible with PopcornSAR’s/other ECUs.

5. Product introduction: Virtual ECU – Customization according to requirements

vECU_Variant2_intel:1.0.0

vECU_Variant3:1.0.0

vECU_Variant1:1.1.0

vECU_Variant1:1.0.0

vECU_Variant2_nxp:1.0.0

Auto-distribution
through Jenkins

• IDE and virtual ECU for the same variant are managed separately.

20

Target ECU

Ubuntu(X86 HOST OS)

Dev. server

Virtual ECU Docker Container

Adaptive Application 2

Adaptive Application 3

Adaptive Application 1

5. Product introduction: Virtual ECU – Identical environment to target ECU

• Once testing is done in a development server, an adaptive application can be ported to target ECU

without recompiling.

-> Maximizes efficiency in development.

NXP S32G ARM POSIX OS

Adaptive Application 2

Adaptive Application 3

Adaptive Application 1

NXP S32G ARM POSIX OS
Same BSP Image

In case of QNX, virtual ECU will run on QEMU instead of docker container.

5. Product introduction: Virtual ECU - QEMU vs Docker Container

21

QEMU (AS-IS) DockerContainer(To-be)

Real-time simulation for
adaptive application in target

board

X
(Consuming ROM/RAM)

O

Virtual ECU
configuration management

X O

Sharing with others X O

Distribution through network X O

Adding adaptive application
in virtual ECU

X O

Others -
Can connect to other docker
containers for system tests

5. Product introduction: Virtual ECU - Examples

22

ARM NXP S32G ECU1

ARM NXP S32G ECU2

ARM NXP S32G ECU3

• Developer can test network by generating multiple virtual ECUs.

<Virtual ECU in PACON IDE> <Terminal in PACON IDE>

5. Product introduction: Virtual ECU - Examples

23

• Can use tshark in Docker Container for system test to monitor virtual ECU(ARM, etc.).

• Can use Wireshark which is installed in PACON IDE.

6. Example of PopcornSAR AP development environment

24

• PopcornSAR AP tool chain doesn’t include QEMU nor Yocto.
• Since ARA API changes frequently for each AP version, PopcornSAR developed its own testing SW.

AP Docker Container 1

Compiler

Vehicle SDK
Virtual ECU Docker Container N

vscode-server

other tools

System Test Docker Container N

AP Docker Container 2

Compiler

Vehicle SDKvscode-server

other tools

AP Docker Container 3

Compiler

Vehicle SDKvscode-server

other tools

Dev. server

Volume

AA source code
& build files

for System Test

Sharing Simultaneously

Tshark, Python, etc.

＜ Dev. Leader＞

＜FC Developer＞

＜Test Assistant＞

<Management through
jira & confluence>

7. PopcornSAR Adaptive tool development roadmap (~2023)

25

2023

2022
2Q

▶Signal Management
(like S2S)

▶python SOME/IP
library

▶PARA QNX
▶R20-11 ara::nm
▶R20-11 ara::com::e2e

▶R20-11 ara::crypto
▶R20-11 ara::iam
▶R20-11 ara::tsync

▶R20-11 ara::ucm
▶R20-11 ara::phm
▶R20-11 ara::diag
▶PACON IDE & vECU

(QEMU) for QNX

▶Provided according to PARA▶Start developing R22-11▶Available for R21-11 & R22-11

3Q 4Q1Q

PARA PACON IDEAutoSAR.io

26

(Appendix 1) Tool demonstrations

1. R20-11 Autosar.io ARXML modeling :

- Link : https://youtu.be/3FYzR0bQ44s

2. R20-11 generation & build for communication between

2 Adaptive Applications :

- Link : https://youtu.be/HYqNEMrYYAw

3. R20-11 ARA::DIAG demo:

- Link : https://youtu.be/jvySoUdoAJs

- Link : https://youtu.be/tm_Cr80d52w

https://youtu.be/HYqNEMrYYAw

27

(Appendix 2) ISO26262 Certificate of PopcornSAR Adaptive platform Authoring tool

